Tutorials Prerequisites

Tutorials for deep learning

Welcome to the Deeplearning4j tutorial series in Zeppelin. To get the best experience with deep learning tutorials this guide will help you set up your machine for Zeppelin notebooks. Alternatively, if you have a notebook interpreter such as Jupyter that has a java interpreter and you can load Deeplearning4j dependencies, you can download any tutorial file that ends with the .ipynb extension.

Each tutorial page has buttons for you to download the notebook file to your local machine.

Prerequisites

While Deeplearning4j is written in Java, the Java Virtual Machine (JVM) lets you import and share code in other JVM languages. These tutorials are written in Scala, the de facto standard for data science in the Java environment. There’s nothing stopping you from using any other interpreter such as Java, Kotlin, or Clojure.

If you’re coming from non-JVM languages like Python or R, you may want to read about how the JVM works before using these tutorials. Knowing the basic terms such as classpath, virtual machine, “strongly-typed” languages, and functional programming will help you debug, as well as expand on the knowledge you gain here. If you don’t know Scala and want to learn it, Coursera has a great course named Functional Programming Principles in Scala.

Install Apache Zeppelin

Run via Docker

Docker is an easy-to-use containerization platform. This is the preferred method for running Zeppelin. Download the latest release from the Skymind Docker Hub.

We’ve assembled a special Docker with all dependencies installed:

docker run -it --rm  -p 8080:8080 skymindops/zeppelin-dl4j:latest

If you have a CUDA-enabled GPU and have nvidia-docker installed:

nvidia-docker run -it --rm  -p 8080:8080 skymindops/zeppelin-dl4j:latest-cuda-8.0

Via Binaries

Native binaries are also available for Zeppelin, downloadable here: https://zeppelin.apache.org/download.html.

Setting up dependencies

If your installation of Zeppelin is not already set up for Deeplearning4j (i.e.: you didn’t use our custom Docker image), you will need to add DL4J to the classpath. The easiest solution is to add the appropriate Maven dependencies to the included Spark Interpreter.

See this Zeppelin documentation for accessing the interpreter settings: https://zeppelin.apache.org/docs/latest/manual/dependencymanagement.html.

Once you have located the Spark Interpreter, you will need to add the following Maven library references:

artifact exlude when to use?
org.nd4j:nd4j-native-platform:0.9.1 n/a CPU-only machines
org.nd4j:nd4j-cuda-8.0-platform:0.9.1 n/a GPU-enabled machines w/ CUDA
org.deeplearning4j:deeplearning4j-core:0.9.1 n/a CPU-only or GPU machines w/o CuDNN
org.deeplearning4j:deeplearning4j-cuda-8.0:0.9.1 n/a GPU machines w/ CuDNN installed
org.deeplearning4j:deeplearning4j-zoo:0.9.1 n/a native zoo functionality (pretrained models)
org.datavec:datavec-spark_2.11:0.9.1_spark_2 org.scala-lang:scala-compiler always
org.deeplearning4j:dl4j-spark_2.11:0.9.1_spark_2 org.scala-lang:scala-compiler always

Alternatively, you can dynamically load dependencies into notebooks, though this is not recommended. If you intend on adding new dependencies, you will have to restart the interpreter before re-running dynamic loading code. With that said, here’s an example on how to do it:

%spark.dep

// if you are running Zeppelin for the first time, use this code block to load dependencies (see README above)
// note that if Zeppelin's spark interpreter has already been run, you will need to restart the interpreter
// clean up any previously loaded dependencies
z.reset()

// now load ND4J for CPU, our native tensor computing library
z.load("org.nd4j:nd4j-native-platform:0.9.1")

// or if you have a CUDA-enabled GPU, you can load ND4J for CUDA
// z.load("org.nd4j:nd4j-cuda-8.0-platform:0.9.1")

// finally, load the core deeplearning4j library with all basic features
z.load("org.deeplearning4j:deeplearning4j-core:0.9.1")

// don't forget to type Shift-Enter to run!

Out-of-memory

Zeppelin may run out of memory when using larger networks. Its default memory setting is low. To fix this, create a zeppelin-env.sh file like this one and enable the ZEPPELIN_INTP_MEM option.

export ZEPPELIN_INTP_MEM="-Xmx10g"

API Reference

API Reference

Detailed API docs for all libraries including DL4J, ND4J, DataVec, and Arbiter.

Examples

Examples

Explore sample projects and demos for DL4J, ND4J, and DataVec in multiple languages including Java and Kotlin.

Tutorials

Tutorials

Step-by-step tutorials for learning concepts in deep learning while using the DL4J API.

Guide

Guide

In-depth documentation on different scenarios including import, distributed training, early stopping, and GPU setup.

Deploying models? There's a tool for that.