Keras Import Recurrent Layers

Keras recurrent layers


KerasLSTM

[source]

Imports a Keras LSTM layer as a DL4J LSTM layer.

KerasLSTM
public KerasLSTM(Integer kerasVersion) throws UnsupportedKerasConfigurationException 

Pass-through constructor from KerasLayer

  • param kerasVersion major keras version
  • throws UnsupportedKerasConfigurationException Unsupported Keras config
getLSTMLayer
public Layer getLSTMLayer() 

Constructor from parsed Keras layer configuration dictionary.

  • param layerConfig dictionary containing Keras layer configuration.
  • throws InvalidKerasConfigurationException Invalid Keras config
  • throws UnsupportedKerasConfigurationException Unsupported Keras config
getOutputType
public InputType getOutputType(InputType... inputType) throws InvalidKerasConfigurationException 

Get layer output type.

  • param inputType Array of InputTypes
  • return output type as InputType
  • throws InvalidKerasConfigurationException Invalid Keras config
getNumParams
public int getNumParams() 

Returns number of trainable parameters in layer.

  • return number of trainable parameters (12)
getInputPreprocessor
public InputPreProcessor getInputPreprocessor(InputType... inputType) throws InvalidKerasConfigurationException 

Gets appropriate DL4J InputPreProcessor for given InputTypes.

  • param inputType Array of InputTypes
  • return DL4J InputPreProcessor
  • throws InvalidKerasConfigurationException Invalid Keras configuration exception
  • see org.deeplearning4j.nn.conf.InputPreProcessor
setWeights
public void setWeights(Map<String, INDArray> weights) throws InvalidKerasConfigurationException 

Set weights for layer.

  • param weights LSTM layer weights
getUnroll
public boolean getUnroll() 

Get whether LSTM layer should be unrolled (for truncated BPTT).

  • return whether to unroll the LSTM
getGateActivationFromConfig
public IActivation getGateActivationFromConfig(Map<String, Object> layerConfig)
            throws InvalidKerasConfigurationException, UnsupportedKerasConfigurationException 

Get LSTM gate activation function from Keras layer configuration.

  • param layerConfig dictionary containing Keras layer configuration
  • return LSTM inner activation function
  • throws InvalidKerasConfigurationException Invalid Keras config
getForgetBiasInitFromConfig
public double getForgetBiasInitFromConfig(Map<String, Object> layerConfig, boolean train)
            throws InvalidKerasConfigurationException, UnsupportedKerasConfigurationException 

Get LSTM forget gate bias initialization from Keras layer configuration.

  • param layerConfig dictionary containing Keras layer configuration
  • return LSTM forget gate bias init
  • throws InvalidKerasConfigurationException Unsupported Keras config

KerasRnnUtils

[source]

Utility functions for Keras RNN layers

getUnrollRecurrentLayer
public static boolean getUnrollRecurrentLayer(KerasLayerConfiguration conf, Map<String, Object> layerConfig)
            throws InvalidKerasConfigurationException 

Get unroll parameter to decide whether to unroll RNN with BPTT or not.

  • param conf KerasLayerConfiguration
  • param layerConfig dictionary containing Keras layer properties
  • return boolean unroll parameter
  • throws InvalidKerasConfigurationException Invalid Keras configuration
getRecurrentDropout
public static double getRecurrentDropout(KerasLayerConfiguration conf, Map<String, Object> layerConfig)
            throws UnsupportedKerasConfigurationException, InvalidKerasConfigurationException 

Get recurrent weight dropout from Keras layer configuration. Non-zero dropout rates are currently not supported.

  • param conf KerasLayerConfiguration
  • param layerConfig dictionary containing Keras layer properties
  • return recurrent dropout rate
  • throws InvalidKerasConfigurationException Invalid Keras configuration

KerasSimpleRnn

[source]

Imports a Keras SimpleRNN layer as a DL4J SimpleRnn layer.

KerasSimpleRnn
public KerasSimpleRnn(Integer kerasVersion) throws UnsupportedKerasConfigurationException 

Pass-through constructor from KerasLayer

  • param kerasVersion major keras version
  • throws UnsupportedKerasConfigurationException Unsupported Keras config
getSimpleRnnLayer
public Layer getSimpleRnnLayer() 

Constructor from parsed Keras layer configuration dictionary.

  • param layerConfig dictionary containing Keras layer configuration.
  • throws InvalidKerasConfigurationException Invalid Keras config
  • throws UnsupportedKerasConfigurationException Unsupported Keras config
getOutputType
public InputType getOutputType(InputType... inputType) throws InvalidKerasConfigurationException 

Get layer output type.

  • param inputType Array of InputTypes
  • return output type as InputType
  • throws InvalidKerasConfigurationException Invalid Keras config
getNumParams
public int getNumParams() 

Returns number of trainable parameters in layer.

  • return number of trainable parameters (12)
getInputPreprocessor
public InputPreProcessor getInputPreprocessor(InputType... inputType) throws InvalidKerasConfigurationException 

Gets appropriate DL4J InputPreProcessor for given InputTypes.

  • param inputType Array of InputTypes
  • return DL4J InputPreProcessor
  • throws InvalidKerasConfigurationException Invalid Keras configuration exception
  • see org.deeplearning4j.nn.conf.InputPreProcessor
getUnroll
public boolean getUnroll() 

Get whether SimpleRnn layer should be unrolled (for truncated BPTT).

  • return whether RNN should be unrolled (boolean)
setWeights
public void setWeights(Map<String, INDArray> weights) throws InvalidKerasConfigurationException 

Set weights for layer.

  • param weights Simple RNN weights
  • throws InvalidKerasConfigurationException Invalid Keras configuration exception

API Reference

API Reference

Detailed API docs for all libraries including DL4J, ND4J, DataVec, and Arbiter.

Examples

Examples

Explore sample projects and demos for DL4J, ND4J, and DataVec in multiple languages including Java and Kotlin.

Tutorials

Tutorials

Step-by-step tutorials for learning concepts in deep learning while using the DL4J API.

Guide

Guide

In-depth documentation on different scenarios including import, distributed training, early stopping, and GPU setup.

Deploying models? There's a tool for that.